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By 2050, it is predicted that there will be between 8.0 and 10.4
billion people on earth, with a median value of 9.1 billion. If all of
these people are to be fed sufficiently, total food consumption
will have to increase by 50-70% (Ober,2010).
Developing food security and declining hunger by 2050 are
beneficial critical objectives for the United Nations. Hence crop
protection and land assessment are of more considerable
significance to global food production. 
A staggering 33% of crop yield loss in India is caused by biotic
stress, which is a major constraint in crop production. Among
the major pests, weeds cause 12.5% loss, whereas insects in the
field inflict 9.5% loss, diseases 6.5% and other pests 4.5% loss
(DWR 2015). 

Background



Crop health monitoring is crucial for early detection of diseases, pest
infestations, and environmental stress. However, existing methods are
limited by scalability, high costs, real-time adaptability, and
accessibility for small-scale farmers. There is a need for an AI-driven
solution that provides real-time crop health analysis, identifying areas
affected by stress, pests, and diseases, enabling farmers to take timely
action for improved productivity and sustainability.

Problem
Statement



How can satellite imagery and temporally sensitive weather patterns be
used to build a scalable system for detailed crop health monitoring
across diverse crop types?

Can a four-class classification framework—categorising crops as healthy,
stressed, diseased, or pest-infested—provide more actionable insights for
precision agriculture than traditional binary classification models?

How do machine learning and deep learning models compare in
performance when trained on integrated satellite and meteorological
data for multi-class crop health classification?

Research
Questions



Early Detection – Identifies crop diseases, pests, and stress before
significant damage occurs.
Precision Farming – Enables targeted treatment, reducing input
costs and improving efficiency.
Remote Monitoring – Uses ML with satellite or drone imagery for
large-scale crop health assessment.
Optimized Resource Use – Helps manage irrigation, fertilizers, and
pesticides effectively.

Potential Applications



S. Iniyan, V. Akhil Varma, and C. Teja Naidu, “Crop yield prediction using machine learning techniques,” Advances
in Engineering Software, vol. 175, p. 103326, Jan. 2023, doi: 10.1016/j.advengsoft.2022.103326.

In India's economy, for the people who are living in rural areas,
agriculture is the primary occupation of more than half of the
population, but it only accounts for 17% of the country's GDP, according
to 2018 statistics.

By improving crop health and reducing losses through AI-driven
solutions, we aim to enhance agricultural productivity, ultimately
increasing its share in the economy.

Impact



Extreme Gradient Boosting (XGBoost) is a more advanced
ensemble method than Random Forest known for its superior

predictive performance and computational efficiency
(Fatima et al., 2023). Unlike RF, XGBoost builds trees

sequentially, with each new tree learning to correct errors
of the previous ones. This gradient boosting approach

enables XGBoost to capture subtle patterns and minimise
bias more effectively, especially in datasets with complex

interactions and class imbalance. 

Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., & Aslam, S. M. H. (2023). XGBoost and random forest algorithms: an in
depth analysis. Pakistan Journal of Scientific Research, 3(1), 26-31.
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Literature Review 1
Interpretation

In our case, due to the significant class imbalance in our datase, primarily healthy crop samples, and the nature of
the features provided by Zindi, Random Forest and XGBoost performed reasonably well in identifying only Healthy
fields, even when we integrated vegetation indices. However, both models struggled to accurately classify other
crop health categories such as diseased or pest-infested crops.

Objective: The paper is trying to predict crop diseases and pest, for tomato plant.
Dataset: There dataset has been captures both manually in greenhouses and taken 
from satellites.

Limitations: XGBoost and Random Forest, while effective for structured tabular data, are not ideal for high-
dimensional image inputs. They lack the ability to capture spatial relationships and temporal patterns inherent in
image sequences. As a result, applying these models to crop health classification requires manual extraction of
features like vegetation indices, which can miss crucial contextual information.



 

Literature Review 2

Rajvanshi, A. (2024, February 23). Early detection of crop diseases using CNN Classification - NHSJS. NHSJS.
https://nhsjs.com/2024/early-detection-of-crop-diseases-using-cnn-classification/



Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in
Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

Literature Review 2
Interpretation

Dataset: The study used image datasets for apple, corn, and tomato crops, combining:
   PlantVillage dataset (Kaggle): High-quality, labeled images of healthy and diseased leaves.
   Field images (Gujarat farms): Real-world photos captured under varied conditions and verified by an 
   agricultural expert.
Classes per crop:
   Apple: Healthy, Apple Scab, Apple Cedar Rust
   Corn: Healthy, Northern Blight, Common Rust
   Tomato: Healthy, Early Blight, Late Blight
Limitations: 
    Limited Generalizability: Trained on specific locations; may not perform well in new environments.
   Low Class Diversity: Only detects a few diseases; no pest or stress detection.
   Labeling Errors: Potential mislabeling, especially for similar-looking diseases.
   Image Variability: Sensitive to lighting, background, and angles.
   Overfitting Risk: Insufficient data for rare classes.
   No Localization: Cannot detect disease spots or handle multiple leaves/diseases.                                       

https://doi.org/10.1016/j.compag.2018.02.016


Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in
Agriculture, 147, 70–90. https://doi.org/10.1016/j.compag.2018.02.016

Literature Review 3

Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LSTM) networks have become especially prevalent in agricultural image
analysis and time-series forecasting. Prenafeta-Boldú (2018) highlights
that DL-based models can efficiently deal with raster-based data (e.g.

video, images), and thus can be used to analyse pictures of the crop field
for classification. It can also be applied to any form of data, such as audio,
speech, and natural language, or more generally to continuous or single

point data such as weather data (Sehgal, et al., 2017), soil chemistry (Song,
et al., 2016) and much more.

Amado emphasizes that LSTM neural networks are prepared for
receiving sequential data as input and are able to extract important
aspects related to the time series since it maintains a chain structure
with time steps, similar to the way that crop growth modeling works.

Each step takes information from previous steps and outside input
(from feature space – new NDVI, EVI, LST and precipitation values),

and provides output for the next step. Furthermore, during the training
process this algorithm is capable of retaining key information of input

signals, ignoring less important parts. These models can process
sequential  data—like canopy change over time—and recognise

latent interactions that impact crop development.

https://doi.org/10.1016/j.compag.2018.02.016


Literature Review 3
Interpretation

CNNs effectively extract spatial features from multispectral and hyperspectral images,
enabling detection of weeds, stress, diseases, and pests.
LSTMs capture temporal dependencies from sequential data such as vegetation indices and
weather variables, identifying deviations from normal crop growth patterns.
This integration allows for the detection of early anomalies in crop health, enabling dynamic,
data-driven decision-making.



 R. A. Schwalbert, T. Amado, G. Corassa, L. P. Pott, P. V. V. Prasad, and I. A. Ciampitti, “Satellite-based soybean yield forecast:
Integrating machine learning and weather data for improving crop yield prediction in southern Brazil,” Agricultural and

Forest Meteorology, vol. 284, p. 107886, Apr. 2020, doi: 10.1016/j.agrformet.2019.107886.
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GAP

https://ieeexplore.ieee.org/abstract/document/10485420

There is a need for a scalable system that integrates satellite
imagery with temporally sensitive weather data for detailed
crop health monitoring across diverse crop types.
The effectiveness of a four-class classification framework
(healthy, stressed, diseased, pest-infested) compared to
traditional binary models remains underexplored.
Limited comparative analysis exists on the performance of
machine learning versus deep learning models when trained
on integrated satellite and meteorological data for multi-class
crop health classification.
A recent study by Javadinejad et al. identified a correlation
between reduced crop yields and two environmental factors:
elevated temperatures and increased precipitation. However,
the integration of temperature and rainfall data in crop health
monitoring models is often limited or missing.



Crop Count Distribution

TARGET CLASSES

DATASET SOURCE
Source: Dataset obtained from an African ML competition
hosted by Zindi, a platform for data science challenges.
Relevance: The dataset includes real-world crop health labeled
dataset, with 4 categories- Stressed, Pests, Healthy, Diseased;
and coordinates of the crop fields in Telangana. (Train Set-
7,889 entries and Test Set- 2719 entries)

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=mlcontests



FEATURES PREPROCESSING

https://data.telangana.gov.in/dataset/telangana-weather-data-2023-2024

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=mlcontests

1.Extracted satellite images using Google Earth Engine
2.Added vegetation indices
3.Removed null values
4.Used label encoding
5.Generated correlation map
6.Reformatted meteorological data
7.Standarization
8.Average Temp, Humidity and Rainfall during the growing phase
9.Time series satellite images



Features Preprocessing
Extracted Satellite Image Using Google Earth Engine

We extracted the most recent image available within the specified time frame, geometry and cloud
cover constraints from Google Earth Engine.

Additionally, we retrieved a time series of images by selecting 5 images of each crop sample, equally spaced over their growth periods ,
which allowed us to monitor temporal changes in vegetation and crop health throughout the growing season.



FEATURES PREPROCESSING

We have enhanced our dataset by integrating meteorological
data with existing crop data, generating new features such as
average temperature and rainfall to improve crop health
analysis. (Telangana Govt. )

We have further enriched our dataset by incorporating
agricultural indices such as NDVI, EVI, MSAVI, and GNDVI,
calculated using satellite imagery to derive valuable insights into
crop health.

https://data.telangana.gov.in/dataset/telangana-weather-data-2023-2024

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=mlcontests



Average Temp and Rainfall
Features Preprocessing

Collected daily temperature, rainfall, and humidity
data from the official Telangana government
website, organized at the district and sub-district
levels.

We computed the average rainfall over the crop's
lifecycle, from sowing to harvesting.
Moreover, we also calculated the minimum and
maximum average temperatures and humidity
during the same period.



Features Preprocessing
Vegetation Indices



Features Preprocessing
Standardisation



Features Preprocessing
Handling NAN Values
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Features Preprocessing
Label Encoding



Features Preprocessing
Correlation Heatmap



PROPOSED ML
METHODOLOGY

1.Dataset: Labeled Sentinel-2 dataset with extracted vegetation indices (NDVI,
NDWI, etc.).

2.Baseline Model: Train a Random Forest model for initial classification.
3.Advanced Models:

a.Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM)
to capture spatial and temporal patterns.

4.Enhancements:
a.Hyperparameter tuning for optimization.
b.Addition of more vegetation indices and texture-based features.
c.Ensemble learning for improved accuracy.

5.Validation: Metrics like accuracy, precision, recall, and F1-score.
6.Final Goal: Develop a robust model for accurate crop health classification

before deployment.



MODEL ARCHITECTURES



ARCHITECTURE 1 
RF WITH ONLY CSV FEATURES

 
Why this model?
 We began with Random Forest (RF) as a baseline ML approach due to its simplicity,
robustness to overfitting, and interpretability.
How it works:

RF creates multiple decision trees using bootstrapped datasets and aggregates
their predictions (majority vote).
It handles feature interactions and noisy data well.

Challenges faced:
The CSV features lacked discriminatory power for stressed, diseased, and pest-
affected classes.
Severe class imbalance meant that the model performed well only for the
healthy class.
Limited interpretability of what features mattered.

Result:
 Low recall and precision for minority classes → motivated shift to a more advanced
model.



ARCHITECTURE 1 
RF WITH ONLY CSV FEATURES



ARCHITECTURE 2
XGBOOST WITH ONLY CSV FEATURES

Why this model?
 We chose XGBoost for its:

Boosting capability to reduce bias.
Better handling of imbalanced classes and complex feature interactions.

How it works:
Builds trees sequentially, each correcting errors of the previous.
Uses gradient descent on a custom loss function.

Challenges faced:
Despite theoretical improvements, performance was similar to RF.
CSV data alone did not provide enough signal for distinguishing between crop
health classes.

Conclusion:
No major gain → highlighted the limitation of necessary features->moved to Deep
Learning.



ARCHITECTURE 2
XGBOOST WITH ONLY CSV FEATURES



ARCHITECTURE 3
 CNN WITH 10 BANDS 

(ONLY SATELLITE IMAGES)
Why this model?
We collected Sentinel-2 tif images (10 bands) to capture spatial information beyond
tabular metadata.
How it works:

CNNs extract spatial features like textures, color variations, and patterns.
Helpful in capturing signs of chlorosis, discoloration, or hotspots.

Challenges faced:
Training was computationally expensive.
Hard to interpret CNN filters and align them with agronomic knowledge.
NDVI and vegetation-specific bands were missing.

Result:
 Improved accuracy, especially for visual cues of stress, but lacked features like
vegetation indices.



ARCHITECTURE 3
 CNN WITH 10 BANDS 

(ONLY SATELLITE IMAGES)



ARCHITECTURE 4
 CNN WITH 16 BANDS

 (ONLY SATELLITE IMAGES)

Why this model?
To improve prediction, we added 6 vegetation index bands (like NDVI, EVI),
expanding to 16-band imagery.
How it works:

CNN uses the extra bands to detect chlorophyll breakdown, water stress, and
other spectral indicators.
These bands directly correlate with crop health.

Challenges faced:
Data preprocessing became heavier (band alignment, normalization).
Model tuning required more epochs and memory.

Result:
Higher class separation for diseased crops, but wrong classification for healthy class.



ARCHITECTURE 4
 CNN WITH 16 BANDS

 (ONLY SATELLITE IMAGES)



ARCHITECTURE 5
 CNN WITH 16 BANDS + CSV

 (NO TEMP/RAINFALL)

Why this model?
 To combine spectral features with soil/environmental tabular data (e.g., Expected
yield, Water covered Area).
How it works:

Dual input model: CNN processes images; FC layers process CSV features.
Fused features used for final prediction.

Challenges faced:
Required custom data loader for multimodal inputs.
Normalization mismatch between image and CSV data initially caused instability.

Result:
 More context-aware predictions, but lacked weather-related temporal features.



ARCHITECTURE 5
 CNN WITH 16 BANDS + CSV

 (NO TEMP/RAINFALL)



ARCHITECTURE 6
  CNN WITH 16 BANDS + CSV

 (WITH TEMP/RAINFALL)

Why this model?
 Weather is a major factor in crop health. Hence, we added temperature, humidity
and rainfall data.
How it works:

Similar dual-stream architecture.
Weather features improved understanding of drought or humidity-related stress.

Challenges faced:
Sourcing and aligning local weather data for each image was difficult.
Determining which features have the most impact required us to review prior
research studies. 
Required time-synced data preprocessing.

Result:
 Significantly better performance for both Stressed-affected and pest-prone
conditions.



ARCHITECTURE 6
  CNN WITH 16 BANDS + CSV

 (WITH TEMP/RAINFALL)



ARCHITECTURE 7
  LSTM-CNN WITH CSV + WEATHER DATA

Why this model?
 Crop health evolves over time. We added temporal dynamics using LSTM over
sequences of NDVI and weather trends.
How it works:

CNN extracts spatial features.
LSTM models time-series patterns like NDVI decline or rainfall droughts.
Final dense layer integrates all features.

Challenges faced:
Hard to collect enough time-series sequences for many fields.
LSTM tuning and overfitting were initial issues.
Class balancing across timeframes was complex.

Result:
 Best performing model; accurately detected progressive stress, pest outbreaks, and
hidden decay patterns.



ARCHITECTURE 7
  LSTM-CNN WITH CSV + WEATHER DATA



PERFORMANCE METRICS & THEIR
SIGNIFICANCE

1. Key Metrics Used
Accuracy:Overall proportion of correctly classified samples.

      Not reliable for imbalanced datasets (Chicco, 2020).
Precision: Ratio of true positives to total predicted positives — shows how many
predicted “diseased” were actually diseased.
Recall: Ratio of true positives to actual positives — shows how many diseased
crops were detected correctly.
F1-Score: Harmonic mean of precision and recall — balances false positives and
false negatives. (Sasaki, 2007)
Macro Average: Calculates the metric for each class independently and takes
the unweighted mean — treats all classes equally.
Weighted Average: Calculates metrics per class and averages them based on
class frequency — better reflects performance on imbalanced data.

2. Why These Metrics?
Multi-class imbalance: Healthy crops dominate the dataset.
F1-score: Highlights performance on minority classes like stressed or pest-
affected crops.
Precision: Ensures fewer false alarms.
Recall: Ensures real issues are not missed.
Macro Average: Ensures all classes (even small ones) are equally evaluated.
Weighted Average: Gives a realistic overall performance considering class
distribution.

Sasaki, Y. (2007). The truth of the F-
measure. Teach tutor mater, 1(5), 1-5.
Chicco, D., & Jurman, G. (2020).
https://doi.org/10.1186/s12864-019-6413-7



PLAKSHA DEPLOYMENT POTENTIAL AND
SCALING BARRIERS

Yes — Deployment Feasible in Plaksha's Sugarcane Fields or nearby fields
Satellite-based monitoring can be implemented using Sentinel-2 imagery of Plaksha’s
fields. First, we need to train it on sugarcane crop then it should work.
Our model is already trained on crop health classification, enabling initial deployment.
Can be adapted further using transfer learning or reinforcement learning as local data
grows.

Challenges in Scaling Up
 1. Regional Generalization

Our dataset was Telangana-specific, and Plaksha may have different climate patterns
(temperature, rainfall, soil).
Model may misclassify due to unseen regional variations.

 2. Crop-Specific Bias
Trained on 7 crops.
May not generalize to Plaksha’s sugarcane or other local crops, thus there is a need for
crop-specific data.

3. Data Diversity & Quantity
Scaling requires continuous updates and retraining with newer images and ground truth
labels.

4. Need for More Data to Generalize
To scale effectively, we need diverse datasets from multiple regions and seasons.
Incorporating edge cases and anomalies will improve model reliability in real-world
deployment.



KEY CHALLENGES
1. Overfitting & Model Generalization

Deep learning models started overfitting early despite regularization.
Complex CNN architectures didn’t scale well on limited data.

2. Dataset Limitations
Limited diversity: Dataset was Telangana-specific — lacked generalization across
regions.
Data scarcity: Each time-series input required ~5 satellite images per field —
difficult to compile.
Imbalanced classes: "Healthy" dominated; other classes like "stressed" or "pest-
affected" were underrepresented.

3. Computational Constraints
High GPU demand for training multimodal and sequential models (CNN + LSTM).
Only one team member had GPU access — bottlenecked parallel experiments.

4. Hyperparameter Tuning
Balancing layer complexity, dropout, learning rate, batch size was time-
consuming.
Automated tuning tools were limited by hardware and time.

5. Complex Conv layers
Overfitting and val loss increased



 HOW WE OVERCAME THE CHALLENGES
1. Tackling Overfitting

Implemented oversampling and undersampling, data augmentation, dropout,
and early stopping.
Reduced CNN complexity instead of increasing — shifted focus to feature
quality.
Applied class-balanced sampling and oversampling techniques.

2. Improving Data Pipeline
Spent time understanding Sentinel-2 image bands and indices (NDVI, EVI).
Built a custom time-series image generator for efficient batch loading.
Prioritized temporal consistency over raw volume.

3. Leveraging Collective Effort
Took help from student TAs, professors from the robotics lab, and domain
experts.
Studied over 50+ research papers on remote sensing and crop classification.

 4. Efficient Collaboration & Learning
Divided tasks: data preprocessing, model building, training, and visualization.
Weekly verbal reports regarding progress and then updating the TAs.
Weekly sync-ups kept everyone aligned despite hardware disparity.



FUTURE WORK & NEXT STEPS

1. Temporal Climate Focus
Use temperature and rainfall data only during critical growth stages (e.g.,
blooming, harvesting)  To better capture heat stress impact on crop health and
yield.

 2. Expand Crop Diversity
Extend model training to include major crops grown across India. Enhances
generalizability across different agricultural zones.

3. Model Optimization
Perform hyperparameter tuning on the LSTM-CNN hybrid model

   Aim: Improve prediction accuracy, especially for minority classes.
4. Explore Advanced Architectures

Experiment with Transformers and Foundation Models.  Leverage their capability
to model long-term dependencies and complex feature relationships.
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YOU


