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Background

e By 2050, it is predicted that there will be between 8.0 and 10.4
billion people on earth, with a median value of 9.1 billion. If all of
these people are to be fed sufficiently, total food consumption
will have to increase by 50-70% (Ober,2010).

e Developing food security and declining hunger by 2050 are
beneficial critical objectives for the United Nations. Hence crop
protection and land assessment are of more considerable
significance to global food production.

e A staggering 33% of crop yield loss in India is caused by biotic
stress, which is a major constraint in crop production. Among
the major pests, weeds cause 12.5% loss, whereas insects in the
field inflict 9.5% loss, diseases 6.5% and other pests 4.5% loss
(DWR 2015).
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Problem
Statement

Crop health monitoring is crucial for early detection of diseases, pest

infestations, and environmental stress. However, existing methods are
limited by scalability, high costs, real-time adaptability, and
accessibility for small-scale farmers. There is a need for an Al-driven
solution that provides real-time crop health analysis, identifying areas
affected by stress, pests, and diseases, enabling farmers to take timely
action for improved productivity and sustainability.



Resedrch
Questions

* How can satellite imagery and temporally sensitive weather patterns be
used to build a scalable system for detailed crop health monitoring

across diverse crop types?

e Can a four-class classification framework—categorising crops as healthy,
stressed, diseased, or pest-infested—provide more actionable insights for
precision agriculture than traditional binary classification models?

 How do machine learning and deep learning models compare in
performance when trained on integrated satellite and meteorological
data for multi-class crop health classification?




Potential Applications

e Early Detection — Identifies crop diseases, pests, and stress before
significant damage occurs.

e Precision Farming — Enables targeted treatment, reducing input
costs and improving efficiency.

e Remote Monitoring — Uses ML with satellite or drone imagery for
large-scale crop health assessment.

e Optimized Resource Use — Helps manage irrigation, fertilizers, and
pesticides effectively.
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Impact

In India’'s economy, for the people who are living in rural areas,
agriculture is the primary occupation of more than half of the
population, but it only accounts for 17% of the country's GDP, according
to 2018 statistics.

By improving crop health and reducing losses through Al-driven
solutions, we aim to enhance agricultural productivity, ultimately
increasing its share in the economy.

S. Iniyan, V. Akhil Varma, and C. Teja Naidu, “Crop yield prediction using machine learning techniques,” Advances
in Engineering Software, vol. 175, p. 103326, Jan. 2023, doi: 10.1016/j.odvengsoft.2022.]03326.




Literature Review ]

2.3.2. Random Forest

Random Forest (RF) is a widely known ensemble built from decision trees trained
on different subsets of the training data. Also, when deciding which variable to split

on a node, RF considers a random set of variables and not the whole set of features.

During classification, each tree votes and the class most agreed upon is returned. As each
tree is trained on a subset of data and of features, the computation is fast. A high number
of trees and the diversity of each of them makes them robust to noise and outliers. Some
studies that have employed Random Forest (RF) are shown in Table 4.

Table 4. Performance of Random Forests.

Classification/Regression Number of Trees Performance
Regression 100 r2=0.75
Regression 200 2 =0.75

Classification - 70.0% acc.
Classification - 95.5% acc., 94.2% {1

RFs can achieve greater accuracy with less number of samples when compared to
other ML techniques [77].

Random Forest Algorithm
in Machine Learning

Training Data
Instance

Model |
Testing )

Extreme Gradient Boosting (XGBoost) is a more advanced
ensemble method than Random Forest known for its superior
predictive performance and computational efficiency
(Fatima et al,, 2023). Unlike RF, XGBoost builds trees
sequentially, with each new tree learning to correct errors
of the previous ones. This gradient boosting approach
enables XGBoost to capture subtle patterns and minimise
bias more effectively, especially in datasets with complex
interactions and class imbalance.

Fatima, S., Hussain, A, Amir, S. B, Ahmed, S. H,, & Aslam, S. M. H. (2023). XGBoost and random forest algorithms: an in

depth analysis. Pakistan Journal of Scientific Research, 3(1), 26-3I.



Literature Review 1
Interpretation

Objective: The paper is trying to predict crop diseases and pest, for tomato plant.
Dataset: There dataset has been captures both manually in greenhouses and taken
from satellites.

Limitations: XGBoost and Random Forest, while effective for structured tabular data, are not ideal for high-
dimensional image inputs. They lack the ability to capture spatial relationships and temporal patterns inherent in
image sequences. As a result, applying these models to crop health classification requires manual extraction of
features like vegetation indices, which can miss crucial contextual information.

In our case, due to the significant class imbalance in our datase, primarily healthy crop samples, and the nature of
the features provided by Zindi, Random Forest and XGBoost performed reasonably well in identifying only Healthy
fields, even when we integrated vegetation indices. However, both models struggled to accurately classify other
crop health categories such as diseased or pest-infested crops.



Literature Review 2

In this study, a Convolutional Neural Network (CNN) model with custom dense layers was
developed for accurate and efficient crop disease detection. The model made use of three
primary convolutional layers and two dense layers to increase the efficiency of the model.
This is different when compared to the earlier studies as instead of using a large number of

convolutional layers, this model prioritizes speed so that farmers can be notified about their

diseases as soon as possible. The model’s efficacy was evaluated using three diverse
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Rajvanshi, A. (2024, February 23). Early detection of crop diseases using CNN Classification - NHSJS. NHSJS.
https://nhsjs.com/2024/e0| rIy—detection—of—crop—diseoses—using—cnn—cldssification/



Literature Review 2
Interpretation

Dataset: The study used image datasets for apple, corn, and tomato crops, combining:
PlantVillage dataset (Kaggle): High-quality, labeled images of healthy and diseased leaves.
Field images (Gujarat farms): Real-world photos captured under varied conditions and verified by an

agricultural expert.

Classes per crop:
Apple: Healthy, Apple Scab, Apple Cedar Rust
Corn: Healthy, Northern Blight, Common Rust
Tomato: Healthy, Early Blight, Late Blight

Limitations:
Limited Generalizability: Trained on specific locations; may not perform well in new environments.

Low Class Diversity: Only detects a few diseases; no pest or stress detection.
Labeling Errors: Potential mislabeling, especially for similar-looking diseases.
Image Variability: Sensitive to lighting, background, and angles.

Overfitting Risk: Insufficient data for rare classes.

No Localization: Cannot detect disease spots or handle multiple leaves/diseases.

Kamilaris, A., & Prenafeta-Boldy, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in
Agriculture, 147, 70-90. https://doi.org/10.1016 /j.compag.2018.02.016



https://doi.org/10.1016/j.compag.2018.02.016

Literature Review 3

Amado emphasizes that LSTM neural networks are prepared for
receiving sequential data as input and are able to extract important
aspects related to the time series since it maintains a chain structure
with time steps, similar to the way that crop growth modeling works.

Each step takes information from previous steps and outside input
(from feature space — new NDVI, EVI, LST and precipitation values),
and provides output for the next step. Furthermore, during the training
process this algorithm is capable of retaining key information of input
signals, ignoring less important parts. These models can process
sequential data—like canopy change over time—and recognise
latent interactions that impact crop development.

Convolutional Neural Networks (CNNs) and Long Short-Term Memory
(LsTM) networks have become especially prevalent in agricultural image
analysis and time-series forecasting. Prenafeta-Boldd (2018) highlights
that DL-based models can efficiently deal with raster-based data (e.g.
video, images), and thus can be used to analyse pictures of the crop field
for classification. It can also be applied to any form of data, such as audio,
speech, and natural language, or more generally to continuous or single
point data such as weather data (Sehgal, et al,, 2017), soil chemistry (Song,
et al,, 2016) and much more.

Kamilaris, A., & Prenafeta-Boldy, F. X. (2018). Deep learning in agriculture: A survey. Computers and Electronics in
Agriculture, 147, 70—-90. https://doi.org/10.1016/j.compag.2018.02.016



https://doi.org/10.1016/j.compag.2018.02.016

Literature Review 3
Interpretation

* CNNs effectively extract spatial features from multispectral and hyperspectral images,

enabling detection of weeds, stress, diseases, and pests.

e LSTMs capture temporal dependencies from sequential data such as vegetation indices and

weather variables, identifying deviations from normal crop growth patterns.

e This integration allows for the detection of early anomalies in crop health, enabling dynamic,

data-driven decision-making.
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Literature Review 4

Thus, considering the importance of soybean in Brazil and its impact on the
global economy, and the evident lack of reliable yield information in near
real-time basis, the implementation of a near-real time yield forecast will

provide a useful layer for agricultural purposes and policy applications.

Therefore, the objectives of this research were to: 1) compare the
performance of three different algorithms (multivariate ordinary least square
— OLS - linear regression, random forest and LSTM neural network) for
forecasting soybean yield using vegetation indices such as NDVI, EVI, and
weather data such as land surface temperature and precipitation as
independent variables, and i1) evaluate how early (during the soybean

growing season) this methoed is able to forecast yield with reasonable

dCcuracy.

R. A. Schwalbert, T. Amado, G. Corassaq, L. P. Pott, P. V. V. Prasad, and I. A. Ciampitti, “Satellite-based soybean yield forecast:
Integrating machine learning and weather data for improving crop yield prediction in southern Brazil,” Agricultural and
Forest Meteorology, vol. 284, p. 107886, Apr. 2020, doi: 10.1016/j.agrformet.2019.107886.



There is a need for a scalable system that integrates satellite
imagery with temporally sensitive weather data for detailed
crop health monitoring across diverse crop types.

The effectiveness of a four-class classification framework
(healthy, stressed, diseased, pest-infested) compared to
traditional binary models remains underexplored.

Limited comparative analysis exists on the performance of
machine learning versus deep learning models when trained
on integrated satellite and meteorological data for multi-class
crop health classification.

A recent study by Javadinejad et al. identified a correlation
between reduced crop yields and two environmental factors:
elevated temperatures and increased precipitation. However,
the integration of temperature and rainfall data in crop health
monitoring models is often limited or missing.

https://ieeexplore.ieee.org/abstract/document/10485420




Number of Plants

DATASET SOURCE

Source: Dataset obtained from an African ML competition
485 474 423 - hosted by Zindi, a platform for data science challenges.
X ant Healt
Hoalthy et e spsy TGO Relevance: The dataset includes real-world crop health labeled
TARGET CLASSES

dataset, with 4 categories- Stressed, Pests, Healthy, Diseased,;
and coordinates of the crop fields in Telangana. (Train Set-
7,889 entries and Test Set- 2719 entries)

Count

> Crop Type

Paddy Cotton Maize Bengal Gram Groundnut Chillies Red Gram
Crop Count Distribution
1 State District Sub-District SDate HDate CropCoveredArea CHeight CNext Clast CTransp IrriType IrriSource IrriCount WaterCov ExpYield Season geometry
2 Telangana Medak Kulcharam  25-11-2023 00:00 14-04-2024 00:00 97 54 Pea Lentil Transplan Flood Groundwat: 4 87 17 Rabi POLYGON ((78.18143246076(
3 Telangana Medak Kulcharam  13-11-2023 00:00 26-04-2024 00:00 82 58 Pea Lentil Transplan Flood Canal 5 94 15 Rabi POLYGON ((78.175451775474
4 Telangana Medak Kulcharam  19-12-2023 00:00 28-04-2024 00:00 92 91 Pea Lentil Transplan Flood Canal 3 99 20 Rabi POLYGON ((78.16914224770]
5 |Telangana Medak |Kulcharam _| 11-02-2023 00:00 04-11-2024 00:00 91 52 Pea Lentil Transplan Flood Canal 5 92 16 Rabi POLYGON ((78.168851038414
6 Telangana Medak Kulcharam  12-12-2023 00:00 19-05-2024 00:00 94 55 Pea Lentil Transplan Flood Canal 5 97 20 Rabi POLYGON ((78.17264452998(
7 Telangana Medak Kulcharam  13-12-2023 00:00 18-05-2024 00:00 97 51 Pea Lentil Transplan Flood Groundwati 5 85 15 Rabi POLYGON ((78.17299094978]
8 Telangana Medak Kulcharam  20-11-2023 00:00 30-05-2024 00:00 84 68 Lentil Pea Transplan Flood Canal 3 90 15 Rabi POLYGON ((78.176543766871
9 Telangana Medak Kulcharam  14-12-2023 00:00 04-04-2024 00:00 86 72 Pea Lentil Transplan Flood Canal 3 91 15 Rabi POLYGON ((78.17882149541]1
10 Telangana Medak Kulcharam  12-10-2023 00:00 05-10-2024 00:00 90 78 Pea Lentil Transplan Flood Canal 3 86 18 Rabi POLYGON ((78.18103587233]
11 |Telangana Medak Kulcharam  12-10-2023 00:00 22-04-2024 00:00 90 53 Lentil Pea Transplan Flood Groundwat: 5 90 19 Rabi POLYGON ((78.18079088834¢4
12 Telangana Medak Kulcharam  12-02-2023 00:00 29-05-2024 00:00 94 56 Lentil Pea Transplan Flood Canal 4 91 17 Rabi POLYGON ((78.17880977719
EIETE S P S T R AN N RS = WV SET-C T W WT- W T <=V BT C ¥ -TaW =) TN itttk & == P S P R =S| =) o SRS - T=VEVI = SN VTS IS 1T ETE 1=

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=micontests




FEATURES PREPROCESSING

|.Extracted satellite images using Google Earth Engine

2.Added vegetation indices

3.Removed null values

4.Used label encoding

5.Generated correlation map

6.Reformatted meteorological data

7.Standarization

8.Average Temp, Humidity and Rainfall during the growing phase
9.Time series satellite images

https://data.telangana.gov.in/dataset/telangana-weather-data-2023-2024

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=micontests



Features Preprocessing

Extracted Satellite Image Using Google Earth Engine

We extracted the most recent image available within the specified time frame, geometry and cloud
cover constraints from Google Earth Engine.

def download rgb image(collection name, bands, start date, end date, region, output folder="'downloads'):
"""Download RGB bands from a GEE collection filtered by date and region.™""
# Load the image collection, filter by date, and clip to region
collection = ee.ImageCollection(collection name).filterDate(start date, end date).filterBounds(region)
image = collection.sort( 'system:time start’, False).first().select(bands).clip(region) # Most recent image

# Define unique filename based on image dates
image id = image.id().getInfo() or f'image {start date} {end date}’
image name = f'{output folder}/{image id} RGB {start date} {end date}.tif’

# Export the image to a GeoTIFF file

geemap.ee export image(
image,
filename=image name,
scale=106, # Sentinel-2 resolution in meters
region=region,
file per band=False, # Save as a multi-band TIFF
crs="EPS5G:4326"

)

print(f"Downloaded: {image name}")

return image name

Additionally, we retrieved a time series of images by selecting 5 images of each crop sample, equally spaced over their growth periods,
which allowed us to monitor temporal changes in vegetation and crop health throughout the growing season.




FEATURES PREPROCESSING

We have enhanced our dataset by integrating meteorological
data with existing crop data, generating new features such as
average temperature and rainfall to improve crop health

analysis. (Telangana Govt. )

We have further enriched our dataset by incorporating
agricultural indices such as NDVI, EVI, MSAVI, and GNDVI,
calculated using satellite imagery to derive valuable insights into
crop health.

https://data.telangana.gov.in/dataset/telangana-weather-data-2023-2024

https://zindi.africa/competitions/telangana-crop-health-challenge?ref=micontests




Features Preprocessing

Average Temp and Rainfall

Collected daily temperature, rainfall, and humidity
data from the official Telangana government
welbsite, organized at the district and sub-district
levels.

We computed the average rainfall over the crop's
lifecycle, from sowing to harvesting.

Moreover, we also calculated the minimum and
maximum average temperatures and humidity
during the same period.
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Features Preprocessing

Vegetation Indices

AE
NDVI

0.097891
0.153496
0.186761
0.182659
0.085718
0.109498

0.05706
0.327901
0.061671

-0.0854
0.055444
0.237447
0.062235

0.16937
0.125228
0.105696
0.183583
0.255051
0.018759
0.121901
0.068539

0.10632
0.033411

AF
GNDVI

0.060872
0.225163
0.237447
0.203138
0.149046

0.15954
0.078259
0.303047
0.045578
-0.18533
0.057788
0.214527
0.090784
0.236645
0.170417
0.174685
0.232086
0.288073
-0.00699
0.193252
0.074103
0.099385
0.031057

AG
CIRE

0.149639
0.202944
0.251967
0.280396

0.10458
0.132785
0.010606
0.727977
0.063419

-0.1167
0.054064

0.41717
0.071759
0.235962

0.17105
0.132497
0.252021
0.345641
0.008479
0.151777

0.12646
0.157789
0.020375

AH
NDRE

0.064787
0.088903
0.107416
0.110882
0.048818
0.061048
0.005243
0.239256
0.030175
-0.06293

0.02582

0.15327
0.033486
0.102907
0.075362
0.059557
0.107248
0.143929
0.003698
0.069482
0.058979
0.071321
0.009647

Al
PRI

-0.00401
0.140486
0.134588
0.098446
0.101394
0.099827
0.073057
0.073175
0.015448

-0.1245
0.032107
0.067853
0.057763
0.137708

0.09801
0.117957
0.130107
0.151949
-0.01069
0.125988

0.01521
0.028422
0.021417

AJ
MSAVI

0.164567
0.254773
0.303626
0.275923
0.154427
0.192727
0.107059
0.451036
0.112835
-0.19086
0.101249

0.33695
0.112566
0.282994
0.209662
0.180877
0.295229
0.395778
0.035699
0.213045
0.127136
0.186139
0.062996

1. NDVI (Normalized Difference Vegetation Index)

NIR - RED
NIR+ RED

2. GNDVI (Green Normalized Difference Vegetation Index)

NDVI =

NIR — GREEN
NIR + GREEN

GNDVI =

3. CIRE (Chlorophyll Index Red Edge)

NIR 1
REDEDGE

4. NDRE (Normalized Difference Red Edge Index)

NIR - REDEDGE
NIR+ REDEDGE

CIRE =

NDRE =

5. PRI (Photochemical Reflectance Index)

B Rs31 — Rsno
Rs31 + Rsro
6. MSAVI (Modified Soil Adjusted Vegetation Index)

PRI

2-NIR+1—4/(2-NIR+1)2—-8-(NIR - RED)

MSAVI = 5




Features Preprocessing

Standardisation

numeric_cols = ["WaterCov", 'ExpYield’,

scaler = StandardScaler()

"IrriCount’, 'CropCoveredArea’,

scaled data = scaler.fit_transform(data[numeric_cols])

scaled data

"CHeight', 'ndvi', 'evi’, 'ndwi', "gndvi’, "savi’, 'msavi’, "Avg Temperature', 'rainfall’]

. 35845477, 0.
.93582983, -0O.
.66821661, -0
69337113, -8.
. 88947484, 0.
AS872868 , -0

. 87515822, -0O.
9977961, @.
.19835142, 0.
82633135, A.
45586165, -1.
.69483584, -0O.

26485193,
30248173],

.89739723,

30248173],
80622567, -

.88041972],

ITRI21BL, -
948632871,
80622567, -
9825659 ],

.32806677,

1.82806338,

8.37192984,

B.3/7192984,

B.37192984,

18174471, -1.87192645,

55178251]1)

. 26924472,

.38436185,

-895691935,

. 27356865,

.863594083,

.15878358,




Features Preprocessing

Handling NAN Values

W X Y Z
AvgMinHumidit AvgMaxHumidity(%) Min Temp AvMax Temp Avg
36.62447552 89.46853147 18.52] 33.44
36.42814371 89.11976048 18.84 33.83
33.13030303 86.61439394 19.43 34,76
47.11306376 90.30186625 21.29 33.82
32.746875 85.58375 19.87 35.33
32.6164557 85.46265823 19.88 35.35
35.09226804 86.36185567 20.04 35.08
34.0079646 89.66637168 18.2 33.64
47.23646409 90.7621547 21.02 33.69
37.78214286 90.73418367 18.62 33.52
40.94099379 88.45569358 20.7 34.44
47.90793651 91.78793651 20.18 32.57
38.35220884 92.7124498 19.9 33.7
35.85 100 14.3 30.95
32.07022901 90.13816794 19.84 34.49
32.668 91.2288 19.51 34.04
34.30916031 85.54274809 18.79 33.35
42.88752475 92.75564356 20.62 33,35
31.76493506 88.12597403 20.79 35.44
34.34759615 89.44326923 20.39 34.67
42.2804878 88.57272727 21.02 34.36

# Basic feature setup
categorical features = ['State', 'District’', 'Crop', 'Season']
numeric_features = ['SowingMonth', 'HarvestMonth', 'CropDuration(Days)’]

preprocessor = ColumnTransformer(transformers=[

('cat', Pipeline([
('imputer', SimpleImputer(strategy='most_frequent')}),
('encoder', OneHotEncoder(handle_unknown='ignore'))

1), categorical_features),

("num', Pipeline(|
('imputer', SimpleImputer(strategy='mean'))

1), numeric_features)

D

# Function to fill missing values using Linear Regression
def fill missing(df, target col, feature cols):

df_train = df[df[target_col].notnull()]

df_test = df[df[target_col].isnull()]

if df_test.empty:

return df

X_train = df_train[feature_cols]

y_train = df train[target col]

X_test = df_test[feature_cols]

pipeline = Pipeline(steps=|
( 'preprocessor', preprocessor),
('regressor', LinearRegression())
1)

pipeline.fit(X train, y_train)

predictions = pipeline.predict(X_test)
df.loc[df[target_col].isnull(), target_col] = predictions
return df

# Step 1: Fill AvgRainfall(mm) first

rainfall_features = ['State', 'District', 'Crop', 'Season', 'SowingMonth', 'HarvestMonth',

df = fill _missing(df, 'AvgRainfall(mm)', rainfall_features)

# Step 2: FillL the remaining columns using rainfall as a feature

all features = rainfall features + ['AvgRainfall(mm)']

for col in ['AvgMinHumidity(%)', 'AvgMaxHumidity(%)', 'Min Temp Avg', 'Max Temp Avg']:
df = fill_missing(df, col, all_features)

'CropDuration(Days) '] \




Features Preprocessing
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Features Preprocessing

Correlation Heatmap

Correlation Heatmap of Numerical Features
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PROPOSED ML
METHODOLOGY

.Dataset: Labeled Sentinel-2 dataset with extracted vegetation indices (NDVI,
NDWI, etc.).
2.Baseline Model: Train a Random Forest model for initial classification.
3.Advanced Models:
a.Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM)
to capture spatial and temporal patterns.
4.Enhancements:
a.Hyperparameter tuning for optimization.
b.Addition of more vegetation indices and texture-based features.
c.Ensemble learning for improved accuracy.
b.Validation: Metrics like accuracy, precision, recall, and Fl-score.
6.Final Goal: Develop a robust model for accurate crop health classification
before deployment.




Features

Temperature/Rainfall

Model Comparison

CNN (10-Band
Images)

"

BIN

CNN (16-Band
Images)

=

i

A

CNN (16-Band
+ CSV, No
Temp/Rain)

i
P

SN N W
CNN (16-Band
+ CSV, With
Temp/Rain)

MODEL ARCHITECTURES

)
PM2.5
LSTM-CNN
(16-Band +
CSV, With
Temp/Rain)

10-Band Satellite
Images

N/A

16-Band Satellite

N/A

16-Band Images +
csv

16-Band Images +
SV

16-Band Images +
CSv

Yes




ARCHITECTURE 1
RF WITH ONLY CSV FEATURES

Why this model?
We began with Random Forest (RF) as a baseline ML approach due to its simplicity,
robustness to overfitting, and interpretability.
How it works:
e RF creates multiple decision trees using bootstrapped datasets and aggregates
their predictions (majority vote).
e It handles feature interactions and noisy data well.
Challenges faced:
e The CSV features lacked discriminatory power for stressed, diseased, and pest-
affected classes.
e Severe class imbalance meant that the model performed well only for the
healthy class.
e Limited interpretability of what features mattered.
Result:
Low recall and precision for minority classes  motivated shift to a more advanced
model.




ARCHITECTURE
RF WITH ONLY CSV FEATURES
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ARCHITECTURE 2
XGBOOST WITH ONLY CSV FEATURES

Why this model?
We chose XGBoost for its:
e Boosting capability to reduce bias.
e Better handling of imbalanced classes and complex feature interactions.
How it works:
e Builds trees sequentially, each correcting errors of the previous.
e Uses gradient descent on a custom loss function.
Challenges faced:
e Despite theoretical improvements, performance was similar to RF.
e CSV data alone did not provide enough signal for distinguishing between crop
health classes.
Conclusion:
No major gain  highlighted the limitation of necessary features->moved to Deep
Learning.




ARCHITECTURE 2
XGBOOST WITH ONLY CSV FEATURES
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ARCHITECTURE 3
CNN WITH 10 BANDS
(ONLY SATELLITE IMAGES)

Why this model?
We collected Sentinel-2 tif images (10 bands) to capture spatial information beyond
tabular metadata.
How it works:
 CNNs extract spatial features like textures, color variations, and patterns.
e Helpful in capturing signs of chlorosis, discoloration, or hotspots.
Challenges faced:
e Training was computationally expensive.
e Hard to interpret CNN filters and align them with agronomic knowledge.
 NDVI and vegetation-specific bands were missing.
Result:
Improved accuracy, especially for visual cues of stress, but lacked features like
vegetation indices.




ARCHITECTURE 3
CNN WITH 10 BANDS
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ARCHITECTURE 4
CNN WITH 16 BANDS
(ONLY SATELLITE IMAGES)

Why this model?
To improve prediction, we added 6 vegetation index bands (like NDVI, EVI),
expanding to 16-band imagery.
How it works:
* CNN uses the extra bands to detect chlorophyll breakdown, water stress, and
other spectral indicators.
e These bands directly correlate with crop health.
Challenges faced:
e Data preprocessing became heavier (band alignment, normalization).
e Model tuning required more epochs and memory.
Result:
Higher class separation for diseased crops, but wrong classification for healthy class.




ARCHITECTURE 4
CNN WITH 16 BANDS
(ONLY SATELLITE IMAGES

Confusion Matrix
o] - 175
A
@ - 28 2 1 1
@
“
= 150
= 125
£
= 26 41
Q
o
= 100
2
&
- 75
2 9 4 13 1
&
- 50
O
@
E < 4 1 0 19 =25
A
) ] ] ] ] = 0
Diseased Healthy Pests Stressed
Predicted




ARCHITECTURE 5
CNN WITH 16 BANDS + CSV
(NO TEMP/RAINFALL)

Why this model?
To combine spectral features with soil/environmental tabular data (e.g., Expected
yield, Water covered Area).
How it works:
e Dual input model: CNN processes images; FC layers process CSV features.
e Fused features used for final prediction.
Challenges faced:
e Required custom data loader for multimodal inputs.
e Normalization mismatch between image and CSV data initially caused instability.
Result:
More context-aware predictions, but lacked weather-related temporal features.




ARCHITECTURE 5
WITH 16 BANDS + CSV
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ARCHITECTURE 6
CNN WITH 16 BANDS + CSV
(WITH TEMP/RAINFALL)

Why this model?
Weather is a major factor in crop health. Hence, we added temperature, humidity
and rainfall data.
How it works:

e Similar dual-stream architecture.

e Weather features improved understanding of drought or humidity-related stress.
Challenges faced:

e Sourcing and aligning local weather data for each image was difficult.

e Determining which features have the most impact required us to review prior

research studies.

e Required time-synced data preprocessing.
Result:
Significantly better performance for both Stressed-affected and pest-prone
conditions.
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ARCHITECTURE 7
LSTM-CNN WITH CSV + WEATHER DATA

Why this model?
Crop health evolves over time. We added temporal dynamics using LSTM over
sequences of NDVI and weather trends.
How it works:

e CNN extracts spatial features.

e LSTM models time-series patterns like NDVI decline or rainfall droughts.

e Final dense layer integrates all features.
Challenges faced:

e Hard to collect enough time-series sequences for many fields.

e LSTM tuning and overfitting were initial issues.

e Class balancing across timeframes was complex.
Result: AP
Best performing model; accurately detected progressive stress, pest outbreaks, and |
hidden decay patterns. e/




ARCHITECTURE 7
LSTM-CNN WITH CSV + WEATHER DATA
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PERFORMANCE METRICS & THEIR
SIGNIFICANCE

1. Key Metrics Used
e Accuracy:Overall proportion of correctly classified samples.
Not reliable for imbalanced datasets (Chicco, 2020).
e Precision: Ratio of true positives to total predicted positives — shows how many
predicted “diseased” were actually diseased.
e Recall: Ratio of true positives to actual positives — shows how many diseased
crops were detected correctly.

false negatives. (Sasaki, 2007)

 Macro Average: Calculates the metric for each class independently and takes
the unweighted mean — treats all classes equally.

e Weighted Average: Calculates metrics per class and averages them based on
class frequency — better reflects performance on imbalanced data.

2. Why These Metrics?

e Multi-class imbalance: Healthy crops dominate the dataset.

e Fl-score: Highlights performance on minority classes like stressed or pest-
affected crops.

e Precision: Ensures fewer false alarms.

e Recall: Ensures real issues are not missed.

e Macro Average: Ensures all classes (even small ones) are equally evaluated.

e Weighted Average: Gives a realistic overall performance considering class
distribution.

e F1-Score: Harmonic mean of precision and recall — balances false positives and

Sasaki, Y. (2007). The truth of the F-
measure. Teach tutor mater, 1(5), 1-5.
Chicco, D., & Jurman, G. (2020).
https://doi.org/10.1186/s12864-019-6413-7




PLAKSHA DEPLOYMENT POTENTIAL AND
SCALING BARRIERS

' Yes — Deployment Feasible in Plaksha's Sugarcane Fields or nearby fields

e Satellite-based monitoring can be implemented using Sentinel-2 imagery of Plaksha’s
fields. First, we need to train it on sugarcane crop then it should work.

e Our model is already trained on crop health classification, enabling initial deployment.

* Can be adapted further using transfer learning or reinforcement learning as local data
grows.

Challenges in Scaling Up
1. Regional Generalization
e Our dataset was Telangana-specific, and Plaksha may have different climate patterns
(temperature, rainfall, soil).
* Model may misclassify due to unseen regional variations.
2. Crop-Specific Bias
e Trained on 7 crops.
* May not generalize to Plaksha's sugarcane or other local crops, thus there is a need for
crop-specific data.
3. Data Diversity & Quantity
e Scaling requires continuous updates and retraining with newer images and ground truth
labels.
4. Need for More Data to Generalize
* To scale effectively, we need diverse datasets from multiple regions and seasons.
* Incorporating edge cases and anomalies will improve model reliability in real-world
deployment.




KEY CHALLENGES

1. Overfitting & Model Generalization
e Deep learning models started overfitting early despite regularization.
e Complex CNN architectures didn’t scale well on limited data.
2. Dataset Limitations
e Limited diversity: Dataset was Telangana-specific — lacked generalization across
regions.
e Data scarcity: Each time-series input required ~5 satellite images per field —
difficult to compile.
e Imbalanced classes: "Healthy" dominated; other classes like "stressed” or "pest-
affected” were underrepresented.
3. Computational Constraints
e High GPU demand for training multimodal and sequential models (CNN + LSTM).
e Only one team member had GPU access — bottlenecked parallel experiments.
4. Hyperparameter Tuning
e Balancing layer complexity, dropout, learning rate, batch size was time-
consuming.
e Automated tuning tools were limited by hardware and time.
5. Complex Conv layers
e Overfitting and val loss increased




HOW WE OVERCAME THE CHALLENGES

1. Tackling Overfitting
* Implemented oversampling and undersampling, data augmentation, dropout,
and early stopping.
e Reduced CNN complexity instead of increasing — shifted focus to feature
quality.
e Applied class-balanced sampling and oversampling techniques.
2. Improving Data Pipeline
e Spent time understanding Sentinel-2 image bands and indices (NDVI, EVI).
e Built a custom time-series image generator for efficient batch loading.
 Prioritized temporal consistency over raw volume.
3. Leveraging Collective Effort
e Took help from student TAs, professors from the robotics lab, and domain
experts.
e Studied over 50+ research papers on remote sensing and crop classification.
4. Efficient Collaboration & Learning
e Divided tasks: data preprocessing, model building, training, and visualization.
e Weekly verbal reports regarding progress and then updating the TAs.
* Weekly sync-ups kept everyone aligned despite hardware disparity.




FUTURE WORK & NEXT STEPS

\Y,

:.:! ) Temporal Climate Focus

e Use temperature and rainfall data only during critical growth stages (e.g.,
blooming, harvesting) To better capture heat stress impact on crop health and
yield.

2. Expand Crop Diversity
e Extend model training to include major crops grown across India. Enhances
generalizability across different agricultural zones.
3. Model Optimization
e Perform hyperparameter tuning on the LSTM-CNN hybrid model
Aim: Improve prediction accuracy, especially for minority classes.
4. Explore Advanced Architectures

e Experiment with Transformers and Foundation Models. Leverage their capability

to model long-term dependencies and complex feature relationships.







